

PITOT TUBES type S

KIMO offers a wide range of high-quality and accurate Pitot tubes, as per the ISO 10780 norm.

These Pitot tubes when being connected to a differential column / or needle / or electronical manometer, can measure the dynamic pressure of a moving fluid in a duct, and then, can deduct its air velocity in m/s and its airflow in m³/h.

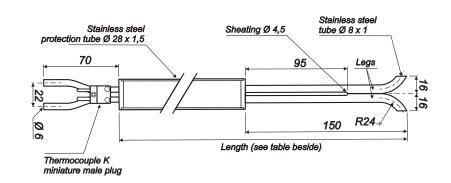
These Pitot tubes are used in HVAC field, vacuum cleaning and pneumatical transport. They are mainly dedicated to measure hot and particle-charged air, and also high air velocity.

KIMC

CONSTRUCTEUR

Pitot tubes type S with TC K

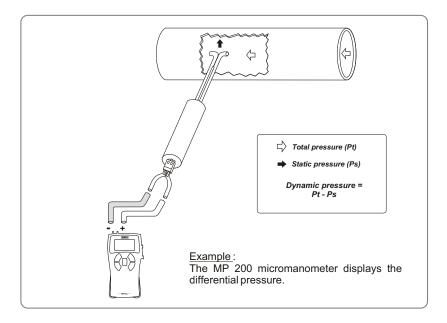
Pitot tubes with TIG welding and protective tube made of stainless steel. Sheated thermocouple K probe integrated, with connection cable length 1,5 m.


Body made of stainless steel.

Norm	ISO 10 780.	
Coefficient	0,84 ± 0,01	
Accuracy	More than 4 %, for a ± 15 °alignment to the fluid flow.	
Quality	Hard stainless steel 4/,as per AFNOR / Z2.CDN.17.12.	
Operating Temperature	From 0 to 1000 °C	
\triangle	The extent error of an air velocity or airflow measurement with a KIMO Pitot tube remains inferior to 3%, when being carried out as per the ISO 10 780 norm.	
	To meet ISO 10 780 norm's requirements, it is recommended to carry out a calibration of the Pitot tube, in order to determine its exact coefficient.	

TECHNICAL CHARACTERISTICS

	Ref.	Length
Ø 8 mm	TPS-08-500-T TPS-08-1000-T TPS-08-1500-T TPS-08-2000-T TPS-08-2500-T	500 mm 1000 mm 1500 mm 2000 mm 2500 mm
	TPS-08-3000-T	3000 mm


The Pitot tube must be introduced perpendicularly into the duct, in several points pre-determined.

The holes must be made in proper alignment to the line of the air or gas flow.

Compared to the Pitot tube L, the Pitot tube S is much more sensitive to wrong alignments.

Taking into account that the Pitot tube is symetrical, it is no use to identify the 2 legs. However, it is important to connect the instrument as follows:

- the leg facing the air flow must be connected to the + sign of the micromanometer
- the leg opposite to the air flow must be connected to the sign of the micromanometer.

With the dynamic pressure in mm H₂O or in Pa, we can calculate the air velocity in m/s, with the simplified BERNOULLI formula :

V in m/s at 20 °C : **K** x
$$\sqrt{\frac{2}{\delta}}$$
 x Δ **P** in Pa

Formula to get the velocity, with temperature balancing of the airflow:

V in m/s = **K** x
$$\sqrt{\frac{574,2 + 156842,77}{Po}}$$
 x $\sqrt{\Delta P}$ in Pa

With:

Po = barometric pressure in Pa θ = temperature in °C

 δ = volumic mass

K = coefficient of the Pitot tube

Accessories

• Extension cable for thermocouple K class 1 :

Ref: **CEK150** Length 1,50 m for temperature probe with compensated miniature male/female plug. **CEK300** Length 3 m for temperature probe with compensated miniature male/female plug.

CEK500 Length 5 m for temperature probe with compensated miniature male/female plug.

• Tubes :

Ref: **TC 5 X 8**

Cristal tube Ø 5 X 8 mm for fixed Pitot tubes.

TS 4 X 7

Flexible or silicone tube Ø 4 X 7 mm black or white for Pitot tubes

• Clamping blocks made of cast iron:

ef: KI-BF-28-F Clamping blocks

Clamping blocks made of cast iron for Pitot tube type S \varnothing 28 mm.

